The National Academies

The National Academies: What You Need To Know About Energy

What You Need To Know About Energy

What do you know about energy?

Which residential usage consumes the largest amount of energy?

  • Sorry, that’s incorrect.

    Consuming the largest amount of energy, space heating accounts for 31% of all residential energy used. Space cooling accounts for an additional 12% of energy usage.

  • Sorry, that’s incorrect.

    Consuming the largest amount of energy, space heating accounts for 31% of all residential energy used. Space cooling accounts for an additional 12% of energy usage.

  • Correct!

    Consuming the largest amount of energy, space heating accounts for 31% of all residential energy used. Space cooling accounts for an additional 12% of energy usage.

  • Sorry, that’s incorrect.

    Consuming the largest amount of energy, space heating accounts for 31% of all residential energy used. Space cooling accounts for an additional 12% of energy usage.

Which of the following is not a primary energy source?

  • Sorry, that’s incorrect.

    Electricity is a secondary energy source because it can only be produced from the use of primary energy sources such as coal, natural gas, or nuclear reactions.

  • Sorry, that’s incorrect.

    Electricity is a secondary energy source because it can only be produced from the use of primary energy sources such as coal, natural gas, or nuclear reactions.

  • Correct!

    Electricity is a secondary energy source because it can only be produced from the use of primary energy sources such as coal, natural gas, or nuclear reactions.

  • Sorry, that’s incorrect.

    Electricity is a secondary energy source because it can only be produced from the use of primary energy sources such as coal, natural gas, or nuclear reactions.

  • Sorry, that’s incorrect.

    Electricity is a secondary energy source because it can only be produced from the use of primary energy sources such as coal, natural gas, or nuclear reactions.

America, with 5% of the planet's population, consumes how much of the world's oil?

  • Sorry, that’s incorrect.

    As of 2014, total world consumption was approximately 92 million barrels per day, about 19 million or 21% of which were used by the United States.

  • Sorry, that’s incorrect.

    As of 2014, total world consumption was approximately 92 million barrels per day, about 19 million or 21% of which were used by the United States.

  • Correct!

    As of 2014, total world consumption was approximately 92 million barrels per day, about 19 million or 21% of which were used by the United States.

  • Sorry, that’s incorrect.

    As of 2014, total world consumption was approximately 92 million barrels per day, about 19 million or 21% of which were used by the United States.

What percentage of harvested corn was used to produce ethanol in the U.S. in 2014?

  • Sorry, that’s incorrect.

    In 2014, about 38% of harvested corn in the US went to make ethanol and its associated coproducts

  • Sorry, that’s incorrect.

    In 2014, about 38% of harvested corn in the US went to make ethanol and its associated coproducts

  • Correct!

    In 2014, about 38% of harvested corn in the US went to make ethanol and its associated coproducts

  • Sorry, that’s incorrect.

    In 2014, about 38% of harvested corn in the US went to make ethanol and its associated coproducts

  • Sorry, that’s incorrect.

    In 2014, about 38% of harvested corn in the US went to make ethanol and its associated coproducts

  • Sorry, that’s incorrect.

    In 2014, about 38% of harvested corn in the US went to make ethanol and its associated coproducts

What percentage of commercial building energy is used by schools?

  • Sorry, that’s incorrect.

    School buildings represent 13% of commercial buildings energy use, or about 2.5% of total U.S. energy use (13% × 19%).

  • Sorry, that’s incorrect.

    School buildings represent 13% of commercial buildings energy use, or about 2.5% of total U.S. energy use (13% × 19%).

  • Correct!

    School buildings represent 13% of commercial buildings energy use, or about 2.5% of total U.S. energy use (13% × 19%).

  • Sorry, that’s incorrect.

    School buildings represent 13% of commercial buildings energy use, or about 2.5% of total U.S. energy use (13% × 19%).

The consumption of energy worldwide is projected to rise by how much between 2013 and 2040?

  • Sorry, that’s incorrect.

    U.S. energy consumption is projected to rise 9% by 2040, or 0.3% per  year, while global consumption will increase about 50% over the same period 

  • Sorry, that’s incorrect.

    U.S. energy consumption is projected to rise 9% by 2040, or 0.3% per  year, while global consumption will increase about 50% over the same period 

  • Sorry, that’s incorrect.

    U.S. energy consumption is projected to rise 9% by 2040, or 0.3% per  year, while global consumption will increase about 50% over the same period 

  • Sorry, that’s incorrect.

    U.S. energy consumption is projected to rise 9% by 2040, or 0.3% per  year, while global consumption will increase about 50% over the same period 

  • Correct!

    U.S. energy consumption is projected to rise 9% by 2040, or 0.3% per  year, while global consumption will increase about 50% over the same period 

On average, which is most efficient in coverting heat into electic power?

  • Sorry, that’s incorrect.

    On average, a typical coal-burning power plant in 2013 was about 33% efficient in converting heat energy into electrical power. A gas-fired plant was about 42% efficient. And in natural gas combined-cycle power plants—in which waste heat from a natural gas turbine is used to power a steam turbine—generation may be as much as 60% efficient.

  • Sorry, that’s incorrect.

    On average, a typical coal-burning power plant in 2013 was about 33% efficient in converting heat energy into electrical power. A gas-fired plant was about 42% efficient. And in natural gas combined-cycle power plants—in which waste heat from a natural gas turbine is used to power a steam turbine—generation may be as much as 60% efficient.

  • Correct!

    On average, a typical coal-burning power plant in 2013 was about 33% efficient in converting heat energy into electrical power. A gas-fired plant was about 42% efficient. And in natural gas combined-cycle power plants—in which waste heat from a natural gas turbine is used to power a steam turbine—generation may be as much as 60% efficient.

Which source(s) of energy are not nuclear in origin?

  • Sorry, that’s incorrect.

    Tidal energy is gravitational in origin. Solar energy comes from nuclear reactions in the sun.

  • Sorry, that’s incorrect.

    Tidal energy is gravitational in origin. Geothermal energy comes from radioactive decay inside the earth.

  • Correct!

    Tidal energy is gravitational in origin. Solar energy comes from nuclear reactions in the sun, and geothermal energy comes from radioactive decay inside the earth.

  • Sorry, that’s incorrect.

    Tidal energy is gravitational in origin. Solar energy comes from nuclear reactions in the sun, and geothermal energy comes from radioactive decay inside the earth.

Nuclear power provided what percentage of the total U.S. energy supply in 2013?

  • Sorry, that’s incorrect.

    19% of our electricity was generated  by nuclear fuel in 2013. 

  • Correct!

    19% of our electricity was generated  by nuclear fuel in 2013. 

  • Sorry, that’s incorrect.

    19% of our electricity was generated  by nuclear fuel in 2013. 

  • Sorry, that’s incorrect.

    19% of our electricity was generated  by nuclear fuel in 2013. 

Place this badge on your facebook page to show your friends what you know about energy.

Get the badge

Place this badge on your facebook page to show your friends what you know about energy.

Get the badge

OR, get a higher score to unlock a different badge.

Retake the quiz

Place this badge on your facebook page to show your friends what you know about energy.

Get the badge

OR, get a higher score to unlock a different badge.

Retake the quiz

Explore Other Topics

Energy Hands-on

The Promise of Better Lighting

Energy savings through lighting technology

Energy Defined

British Thermal Unit

A unit of measure for the energy content of fuels. One Btu is the amount of energy needed to raise a pound of water by one degree Fahrenheit.

View our full glossary