The National Academies

The National Academies: What You Need To Know About Energy

What You Need To Know About Energy

What do you know about energy?

If electricity production wastes between 40 and 65% of the primary energy source, why is it used?

  • Sorry, that’s incorrect.

    Most direct uses of primary energy are limited to generating heat and motion. Electricity, by contrast, is extremely versatile, with a wide range of complex applications. 

  • Sorry, that’s incorrect.

    Most direct uses of primary energy are limited to generating heat and motion. Electricity, by contrast, is extremely versatile, with a wide range of complex applications. 

  • Correct!

    Most direct uses of primary energy are limited to generating heat and motion. Electricity, by contrast, is extremely versatile, with a wide range of complex applications. 

Which of the following is not considered to be a drawback to wind energy?

  • Sorry, that’s incorrect.

    While wind energy has many benefits, all of the above are considered drawbacks to wind energy.

  • Sorry, that’s incorrect.

    While wind energy has many benefits, all of the above are considered drawbacks to wind energy.

  • Sorry, that’s incorrect.

    While wind energy has many benefits, all of the above are considered drawbacks to wind energy.

  • Correct!

    While wind energy has many benefits, all of the above are considered drawbacks to wind energy.

Between 1980 and 2012, after fuel economy standards where put in place, which of the following has happened to vehicles?

  • Sorry, that’s incorrect.

    Improved vehicle efficiency has allowed for increases in weight, horsepower and fuel economy.

  • Sorry, that’s incorrect.

    Improved vehicle efficiency has allowed for increases in weight, horsepower and fuel economy.

  • Sorry, that’s incorrect.

    Improved vehicle efficiency has allowed for increases in weight, horsepower and fuel economy.

  • Correct!

    Improved vehicle efficiency has allowed for increases in weight, horsepower and fuel economy.

How are battery electric vehicles and hybrid vehicles different?

  • Sorry, that’s incorrect.

    Battery electric vehicles have only a motor and battery, they recharge from the grid and their carbon emissions depend on the energy used to generate the electricity they use. Hybrid vehicles have both a gasoline engine and an electric motor, and use petroleum onboard when their batteries are exhausted. Some hybrid vehicles can charge from the grid and others cannot. 

  • Sorry, that’s incorrect.

    Battery electric vehicles have only a motor and battery, they recharge from the grid and their carbon emissions depend on the energy used to generate the electricity they use. Hybrid vehicles have both a gasoline engine and an electric motor, and use petroleum onboard when their batteries are exhausted. Some hybrid vehicles can charge from the grid and others cannot. 

  • Sorry, that’s incorrect.

    Battery electric vehicles have only a motor and battery, they recharge from the grid and their carbon emissions depend on the energy used to generate the electricity they use. Hybrid vehicles have both a gasoline engine and an electric motor, and use petroleum onboard when their batteries are exhausted. Some hybrid vehicles can charge from the grid and others cannot. 

  • Sorry, that’s incorrect.

    Battery electric vehicles have only a motor and battery, they recharge from the grid and their carbon emissions depend on the energy used to generate the electricity they use. Hybrid vehicles have both a gasoline engine and an electric motor, and use petroleum onboard when their batteries are exhausted. Some hybrid vehicles can charge from the grid and others cannot. 

  • Correct!

    Battery electric vehicles have only a motor and battery, they recharge from the grid and their carbon emissions depend on the energy used to generate the electricity they use. Hybrid vehicles have both a gasoline engine and an electric motor, and use petroleum onboard when their batteries are exhausted. Some hybrid vehicles can charge from the grid and others cannot. 

The United States is home to how many of the world's automobiles?

  • Sorry, that’s incorrect.

    With less than 5% of the world's population, the United States is home to one-third of the world's automobiles.

  • Correct!

    With less than 5% of the world's population, the United States is home to one-third of the world's automobiles.

  • Sorry, that’s incorrect.

    With less than 5% of the world's population, the United States is home to one-third of the world's automobiles.

A typical incandescent lamp (traditional light bulb) consumes 60 watts of power. How much do each of a compact fluorescent and LED lamp consume, in watts, to produce the same amount of light?

  • Sorry, that’s incorrect.

    A typical incandescent lamp (traditional light bulb) that consumes 60 watts of power produces around 800 lumens. A compact fluorescent lamp emits the same amount of light while using only 13 watts. And an LED lamp consumes only 10 watts to give off the same 800 lumens.

  • Sorry, that’s incorrect.

    A typical incandescent lamp (traditional light bulb) that consumes 60 watts of power produces around 800 lumens. A compact fluorescent lamp emits the same amount of light while using only 13 watts. And an LED lamp consumes only 10 watts to give off the same 800 lumens.

  • Sorry, that’s incorrect.

    A typical incandescent lamp (traditional light bulb) that consumes 60 watts of power produces around 800 lumens. A compact fluorescent lamp emits the same amount of light while using only 13 watts. And an LED lamp consumes only 10 watts to give off the same 800 lumens.

  • Correct!

    A typical incandescent lamp (traditional light bulb) that consumes 60 watts of power produces around 800 lumens. A compact fluorescent lamp emits the same amount of light while using only 13 watts. And an LED lamp consumes only 10 watts to give off the same 800 lumens.

Which of the following sources do experts expect will provide us with the “silver bullet” solution to our energy needs?

  • Sorry, that’s incorrect.

    There is no silver bullet. Tomorrow’s energy, like today’s, will come from a variety of sources.

  • Sorry, that’s incorrect.

    There is no silver bullet. Tomorrow’s energy, like today’s, will come from a variety of sources.

  • Sorry, that’s incorrect.

    There is no silver bullet. Tomorrow’s energy, like today’s, will come from a variety of sources.

  • Correct!

    There is no silver bullet. Tomorrow’s energy, like today’s, will come from a variety of sources.

In 2014, approximately how much energy did the United States use, in quadrillion BTUs?

  • Sorry, that’s incorrect.

    U.S. energy consumption was about 98 quads in 2014.

  • Sorry, that’s incorrect.

    U.S. energy consumption was about 98 quads in 2014.

  • Sorry, that’s incorrect.

    U.S. energy consumption was about 98 quads in 2014.

  • Correct!

    U.S. energy consumption was about 98 quads in 2014.

On average, how much solar radiation reaches each square meter of earth?

  • Sorry, that’s incorrect.

    On average, even after passing through hundreds of kilometers of air on a clear day, solar radiation reaches Earth with enough energy in a single square meter to run a mid-size desktop computer-if all the sunlight could be captured and converted to electricity.

  • Correct!

    On average, even after passing through hundreds of kilometers of air on a clear day, solar radiation reaches Earth with enough energy in a single square meter to run a mid-size desktop computer-if all the sunlight could be captured and converted to electricity.

  • Sorry, that’s incorrect.

    On average, even after passing through hundreds of kilometers of air on a clear day, solar radiation reaches Earth with enough energy in a single square meter to run a mid-size desktop computer-if all the sunlight could be captured and converted to electricity.

Place this badge on your facebook page to show your friends what you know about energy.

Get the badge

Place this badge on your facebook page to show your friends what you know about energy.

Get the badge

OR, get a higher score to unlock a different badge.

Retake the quiz

Place this badge on your facebook page to show your friends what you know about energy.

Get the badge

OR, get a higher score to unlock a different badge.

Retake the quiz

Explore Other Topics

Energy Hands-on

The Promise of Better Lighting

Energy savings through lighting technology

Energy Defined

All-Electric Vehicle (EV)

A vehicle powered entirely by electricity stored in on-board batteries and without access to the use of gasoline or diesel fuel as an alternative energy source. Batteries are recharged by plugging them into an electricity source while the vehicle is parked.

View our full glossary