The National Academies

The National Academies: What You Need To Know About Energy

What You Need To Know About Energy

What do you know about energy?

What percentage of commercial building energy is used by schools?

  • Sorry, that’s incorrect.

    School buildings represent 13% of commercial buildings energy use, or about 2.5% of total U.S. energy use (13% × 19%).

  • Sorry, that’s incorrect.

    School buildings represent 13% of commercial buildings energy use, or about 2.5% of total U.S. energy use (13% × 19%).

  • Correct!

    School buildings represent 13% of commercial buildings energy use, or about 2.5% of total U.S. energy use (13% × 19%).

  • Sorry, that’s incorrect.

    School buildings represent 13% of commercial buildings energy use, or about 2.5% of total U.S. energy use (13% × 19%).

Which of the following is considered an obstacle to cars running on hydrogen fuel cells?

  • Sorry, that’s incorrect.

    All of the reasons mentioned are considered obstacles to producing cars that run on hydrogen fuel cells.

  • Sorry, that’s incorrect.

    All of the reasons mentioned are considered obstacles to producing cars that run on hydrogen fuel cells.

  • Sorry, that’s incorrect.

    All of the reasons mentioned are considered obstacles to producing cars that run on hydrogen fuel cells.

  • Correct!

    All of the reasons mentioned are considered obstacles to producing cars that run on hydrogen fuel cells.

Since the beginning of the industrial revolution, about how much have atmospheric carbon dioxide concentrations increased?

  • Correct!

    CO2 concentration in the atmosphere has risen about 43% since the beginning of the industrial revolution in the mid-eighteenth century-half of that since 1980

  • Sorry, that’s incorrect.

    CO2 concentration in the atmosphere has risen about 43% since the beginning of the industrial revolution in the mid-eighteenth century-half of that since 1980

  • Sorry, that’s incorrect.

    CO2 concentration in the atmosphere has risen about 43% since the beginning of the industrial revolution in the mid-eighteenth century-half of that since 1980

  • Sorry, that’s incorrect.

    CO2 concentration in the atmosphere has risen about 43% since the beginning of the industrial revolution in the mid-eighteenth century-half of that since 1980

What is the primary energy user in the industrial sector?

  • Sorry, that’s incorrect.

    A few industries use a very large share of energy in the industrial sector. Petroleum refining is the principal consumer, with the chemical industry a close second. Those users, plus the paper and metal industries, account for 78% of total industrial energy use.

  • Sorry, that’s incorrect.

    A few industries use a very large share of energy in the industrial sector. Petroleum refining is the principal consumer, with the chemical industry a close second. Those users, plus the paper and metal industries, account for 78% of total industrial energy use.

  • Sorry, that’s incorrect.

    A few industries use a very large share of energy in the industrial sector. Petroleum refining is the principal consumer, with the chemical industry a close second. Those users, plus the paper and metal industries, account for 78% of total industrial energy use.

  • Sorry, that’s incorrect.

    A few industries use a very large share of energy in the industrial sector. Petroleum refining is the principal consumer, with the chemical industry a close second. Those users, plus the paper and metal industries, account for 78% of total industrial energy use.

  • Correct!

    A few industries use a very large share of energy in the industrial sector. Petroleum refining is the principal consumer, with the chemical industry a close second. Those users, plus the paper and metal industries, account for 78% of total industrial energy use.

How are battery electric vehicles and hybrid vehicles different?

  • Sorry, that’s incorrect.

    Battery electric vehicles have only a motor and battery, they recharge from the grid and their carbon emissions depend on the energy used to generate the electricity they use. Hybrid vehicles have both a gasoline engine and an electric motor, and use petroleum onboard when their batteries are exhausted. Some hybrid vehicles can charge from the grid and others cannot. 

  • Sorry, that’s incorrect.

    Battery electric vehicles have only a motor and battery, they recharge from the grid and their carbon emissions depend on the energy used to generate the electricity they use. Hybrid vehicles have both a gasoline engine and an electric motor, and use petroleum onboard when their batteries are exhausted. Some hybrid vehicles can charge from the grid and others cannot. 

  • Sorry, that’s incorrect.

    Battery electric vehicles have only a motor and battery, they recharge from the grid and their carbon emissions depend on the energy used to generate the electricity they use. Hybrid vehicles have both a gasoline engine and an electric motor, and use petroleum onboard when their batteries are exhausted. Some hybrid vehicles can charge from the grid and others cannot. 

  • Sorry, that’s incorrect.

    Battery electric vehicles have only a motor and battery, they recharge from the grid and their carbon emissions depend on the energy used to generate the electricity they use. Hybrid vehicles have both a gasoline engine and an electric motor, and use petroleum onboard when their batteries are exhausted. Some hybrid vehicles can charge from the grid and others cannot. 

  • Correct!

    Battery electric vehicles have only a motor and battery, they recharge from the grid and their carbon emissions depend on the energy used to generate the electricity they use. Hybrid vehicles have both a gasoline engine and an electric motor, and use petroleum onboard when their batteries are exhausted. Some hybrid vehicles can charge from the grid and others cannot. 

How efficient are ordinary commercial solar cell units?

  • Sorry, that’s incorrect.

    As of 2014, the very best experimental units could convert more than 40% of light energy to electricity; ordinary commercial units are in the range of 5% to 20%. 

  • Sorry, that’s incorrect.

    As of 2014, the very best experimental units could convert more than 40% of light energy to electricity; ordinary commercial units are in the range of 5% to 20%. 

  • Correct!

    As of 2014, the very best experimental units could convert more than 40% of light energy to electricity; ordinary commercial units are in the range of 5% to 20%. 

  • Sorry, that’s incorrect.

    As of 2014, the very best experimental units could convert more than 40% of light energy to electricity; ordinary commercial units are in the range of 5% to 20%. 

True or False: Burning coal in electric power plants is a major source of CO2 and other emissions. However, its use doesn't have negative consequences beyond the emissions caused by combustion.

  • Sorry, that’s incorrect.

    Mining coal disturbs the land and modifies the chemistry of rainwater runoff, which in turn affects stream and river water quality.

  • Correct!

    Mining coal disturbs the land and modifies the chemistry of rainwater runoff, which in turn affects stream and river water quality.

Which of the following is frequently used as a unit of measurement for the energy content of fuels?

  • Sorry, that’s incorrect.

    The British Thermal Unit, or Btu, is frequently used as a measure for energy content of fuels. One gallon of gasoline contains about 124,000 Btu.

  • Correct!

    The British Thermal Unit, or Btu, is frequently used as a measure for energy content of fuels. One gallon of gasoline contains about 124,000 Btu.

  • Sorry, that’s incorrect.

    The British Thermal Unit, or Btu, is frequently used as a measure for energy content of fuels. One gallon of gasoline contains about 124,000 Btu.

  • Sorry, that’s incorrect.

    The British Thermal Unit, or Btu, is frequently used as a measure for energy content of fuels. One gallon of gasoline contains about 124,000 Btu.

On average, how much solar radiation reaches each square meter of earth?

  • Sorry, that’s incorrect.

    On average, even after passing through hundreds of kilometers of air on a clear day, solar radiation reaches Earth with enough energy in a single square meter to run a mid-size desktop computer-if all the sunlight could be captured and converted to electricity.

  • Correct!

    On average, even after passing through hundreds of kilometers of air on a clear day, solar radiation reaches Earth with enough energy in a single square meter to run a mid-size desktop computer-if all the sunlight could be captured and converted to electricity.

  • Sorry, that’s incorrect.

    On average, even after passing through hundreds of kilometers of air on a clear day, solar radiation reaches Earth with enough energy in a single square meter to run a mid-size desktop computer-if all the sunlight could be captured and converted to electricity.

Place this badge on your facebook page to show your friends what you know about energy.

Get the badge

Place this badge on your facebook page to show your friends what you know about energy.

Get the badge

OR, get a higher score to unlock a different badge.

Retake the quiz

Place this badge on your facebook page to show your friends what you know about energy.

Get the badge

OR, get a higher score to unlock a different badge.

Retake the quiz

Explore Other Topics

Energy Hands-on

The Promise of Better Lighting

Energy savings through lighting technology

Energy Defined

Syngas

A mixture of carbon monoxide, hydrogen, and sometimes other gases that can react to form higher hydrocarbons, natural gas, or methanol. Syngas is short for synthesis gas.

View our full glossary