The National Academies

The National Academies: What You Need To Know About Energy

What You Need To Know About Energy

What do you know about energy?

A typical incandescent lamp (traditional light bulb) consumes 60 watts of power. How much do each of a compact fluorescent and LED lamp consume, in watts, to produce the same amount of light?

  • Sorry, that’s incorrect.

    A typical incandescent lamp (traditional light bulb) that consumes 60 watts of power produces around 800 lumens. A compact fluorescent lamp emits the same amount of light while using only 13 watts. And an LED lamp consumes only 10 watts to give off the same 800 lumens.

  • Sorry, that’s incorrect.

    A typical incandescent lamp (traditional light bulb) that consumes 60 watts of power produces around 800 lumens. A compact fluorescent lamp emits the same amount of light while using only 13 watts. And an LED lamp consumes only 10 watts to give off the same 800 lumens.

  • Sorry, that’s incorrect.

    A typical incandescent lamp (traditional light bulb) that consumes 60 watts of power produces around 800 lumens. A compact fluorescent lamp emits the same amount of light while using only 13 watts. And an LED lamp consumes only 10 watts to give off the same 800 lumens.

  • Correct!

    A typical incandescent lamp (traditional light bulb) that consumes 60 watts of power produces around 800 lumens. A compact fluorescent lamp emits the same amount of light while using only 13 watts. And an LED lamp consumes only 10 watts to give off the same 800 lumens.

What is the commonly accepted unit of measurement for electric current—or the amount of an electric charge passing a point per unit time?

  • Sorry, that’s incorrect.

    The ampere, or amp, is the most commonly used measurement for electric current.

  • Sorry, that’s incorrect.

    The ampere, or amp, is the most commonly used measurement for electric current.

  • Correct!

    The ampere, or amp, is the most commonly used measurement for electric current.

  • Sorry, that’s incorrect.

    The ampere, or amp, is the most commonly used measurement for electric current.

Between 1980 and 2012, after fuel economy standards where put in place, which of the following has happened to vehicles?

  • Sorry, that’s incorrect.

    Improved vehicle efficiency has allowed for increases in weight, horsepower and fuel economy.

  • Sorry, that’s incorrect.

    Improved vehicle efficiency has allowed for increases in weight, horsepower and fuel economy.

  • Sorry, that’s incorrect.

    Improved vehicle efficiency has allowed for increases in weight, horsepower and fuel economy.

  • Correct!

    Improved vehicle efficiency has allowed for increases in weight, horsepower and fuel economy.

On average, which is most efficient in coverting heat into electic power?

  • Sorry, that’s incorrect.

    On average, a typical coal-burning power plant in 2013 was about 33% efficient in converting heat energy into electrical power. A gas-fired plant was about 42% efficient. And in natural gas combined-cycle power plants—in which waste heat from a natural gas turbine is used to power a steam turbine—generation may be as much as 60% efficient.

  • Sorry, that’s incorrect.

    On average, a typical coal-burning power plant in 2013 was about 33% efficient in converting heat energy into electrical power. A gas-fired plant was about 42% efficient. And in natural gas combined-cycle power plants—in which waste heat from a natural gas turbine is used to power a steam turbine—generation may be as much as 60% efficient.

  • Correct!

    On average, a typical coal-burning power plant in 2013 was about 33% efficient in converting heat energy into electrical power. A gas-fired plant was about 42% efficient. And in natural gas combined-cycle power plants—in which waste heat from a natural gas turbine is used to power a steam turbine—generation may be as much as 60% efficient.

What type of transportation uses the most total energy?

  • Correct!

    By far the largest share of energy in transportation is consumed by cars, light trucks, and motorcycles—about 58% in 2012, followed by other trucks (21%), aircraft (9%), boats and ships (3%), and trains and buses (3%). Pipelines account for 3% and military uses for 2%.

  • Sorry, that’s incorrect.

    By far the largest share of energy in transportation is consumed by cars, light trucks, and motorcycles—about 58% in 2012, followed by other trucks (21%), aircraft (9%), boats and ships (3%), and trains and buses (3%). Pipelines account for 3% and military uses for 2%.

  • Sorry, that’s incorrect.

    By far the largest share of energy in transportation is consumed by cars, light trucks, and motorcycles—about 58% in 2012, followed by other trucks (21%), aircraft (9%), boats and ships (3%), and trains and buses (3%). Pipelines account for 3% and military uses for 2%.

  • Sorry, that’s incorrect.

    By far the largest share of energy in transportation is consumed by cars, light trucks, and motorcycles—about 58% in 2012, followed by other trucks (21%), aircraft (9%), boats and ships (3%), and trains and buses (3%). Pipelines account for 3% and military uses for 2%.

  • Sorry, that’s incorrect.

    By far the largest share of energy in transportation is consumed by cars, light trucks, and motorcycles—about 58% in 2012, followed by other trucks (21%), aircraft (9%), boats and ships (3%), and trains and buses (3%). Pipelines account for 3% and military uses for 2%.

Which of the following sources do experts expect will provide us with the “silver bullet” solution to our energy needs?

  • Sorry, that’s incorrect.

    There is no silver bullet. Tomorrow’s energy, like today’s, will come from a variety of sources.

  • Sorry, that’s incorrect.

    There is no silver bullet. Tomorrow’s energy, like today’s, will come from a variety of sources.

  • Sorry, that’s incorrect.

    There is no silver bullet. Tomorrow’s energy, like today’s, will come from a variety of sources.

  • Correct!

    There is no silver bullet. Tomorrow’s energy, like today’s, will come from a variety of sources.

America, with 5% of the planet's population, consumes how much of the world's oil?

  • Sorry, that’s incorrect.

    As of 2014, total world consumption was approximately 92 million barrels per day, about 19 million or 21% of which were used by the United States.

  • Sorry, that’s incorrect.

    As of 2014, total world consumption was approximately 92 million barrels per day, about 19 million or 21% of which were used by the United States.

  • Correct!

    As of 2014, total world consumption was approximately 92 million barrels per day, about 19 million or 21% of which were used by the United States.

  • Sorry, that’s incorrect.

    As of 2014, total world consumption was approximately 92 million barrels per day, about 19 million or 21% of which were used by the United States.

What is a major reason that the U.S. is exporting more oil in 2014 than in 2005?

  • Sorry, that’s incorrect.

    New technologies for drilling have led to increases in supply of oil in the U.S. in the decade up to 2014.

  • Sorry, that’s incorrect.

    New technologies for drilling have led to increases in supply of oil in the U.S. in the decade up to 2014.

  • Sorry, that’s incorrect.

    New technologies for drilling have led to increases in supply of oil in the U.S. in the decade up to 2014.

  • Sorry, that’s incorrect.

    New technologies for drilling have led to increases in supply of oil in the U.S. in the decade up to 2014.

  • Correct!

    New technologies for drilling have led to increases in supply of oil in the U.S. in the decade up to 2014.

Energy intensity is a measure of:

  • Correct!

    Energy intensity is a measure of a nation's energy efficiency represented through energy use per unit of GDP (Gross Domestic Product).

  • Sorry, that’s incorrect.

    Energy intensity is a measure of a nation's energy efficiency represented through energy use per unit of GDP (Gross Domestic Product).

  • Sorry, that’s incorrect.

    Energy intensity is a measure of a nation's energy efficiency represented through energy use per unit of GDP (Gross Domestic Product).

Place this badge on your facebook page to show your friends what you know about energy.

Get the badge

Place this badge on your facebook page to show your friends what you know about energy.

Get the badge

OR, get a higher score to unlock a different badge.

Retake the quiz

Place this badge on your facebook page to show your friends what you know about energy.

Get the badge

OR, get a higher score to unlock a different badge.

Retake the quiz

Explore Other Topics

Energy Hands-on

The Promise of Better Lighting

Energy savings through lighting technology

Energy Defined

Plug-In Hybrid Electric Vehicle (PHEV)

A vehicle that contains a gasoline powered engine as well as batteries that can be charged when plugged into an electric power source. The vehicle typically runs on battery power until the charge has been depleted and then uses the gasoline engine for extended range.

View our full glossary